
Abstract

The wave patterns that occur when a shock wave interacts with an

abrupt area change are analyzed in terms of the incident shock wave

Mach number and area-jump ratio. The solutions predicted by a self-

similar model are in good agreement with those obtained numerically

from the quasi-one-dimensional time-dependent Euler equations. The

entropy production for the wave system is de�ned and the principle of

minimum entropy production is used to resolve a nonuniqueness problem

of the self-similar model.

Introduction

The interaction of a shock wave with a channel of
rapidly varying cross-sectional area is of interest in a
number of practical problems, such as the passage of
shocks through wire-mesh screens, the starting pro-
cess in a supersonic wind tunnel, and the phenomena
that occur in piston engines and jet engines. Previous
investigators (refs. 1{3) have shown that a self-similar
inviscid model with a discontinuous area change can
provide good agreement with experimental observa-
tions. A solution to this model is obtained by guess-
ing a self-similar wave pattern with its origin at the
location of the area discontinuity. The guessed pat-
tern is validated if the conservation laws of mass, mo-
mentum, and energy can be satis�ed. The problem
essentially depends on two parameters: the strength
of the incident shock wave, measured by the shock
wave Mach number, and the area ratio across the
discontinuity. This parameter space is rich in the
number of possible wave patterns and several inves-
tigators (refs. 3{5) have indicated that more than one
wave pattern might satisfy all the conservation laws.

The existence of multiple solutions was the sub-
ject of an article by Oppenheim, Urtiew, and Stern
(ref. 5). They showed that, in a region of the pa-
rameter space corresponding to supersonic 
ow be-
hind the incident shock and within a certain range
of area contraction, three wave patterns could sat-
isfy all the conservation laws. Oppenheim, Urtiew,
and Stern conjectured that the ambiguity could be
resolved by invoking the minimum entropy produc-
tion principle. This led them to accept two solutions
in this region, one with a standing shock wave within
the area contraction. Rudinger (refs. 6 and 7) ques-
tioned their conclusion, pointing to the well known
fact that a standing shock in a converging channel
is unstable. Through a study of the transient phe-
nomena produced by a steep, but continuous, area
variation, Rudinger concluded that the only solution
that could be realized in this ambiguous region cor-
responds to a wave pattern with a rarefaction swept
downstream. Here we show that the solution pro-

posed by Rudinger can be reconciled with the mini-
mum entropy production principle if the entropy pro-
duction is properly de�ned.

Rudinger's transient analysis was based on a
graphical method of characteristics. This tedious ap-
proach limited Rudinger to the study of three speci�c
examples. In order to establish conclusively that a
re
ected shock wave cannot be formed in the region
of ambiguity, Rudinger proceeded to show that the
waves re
ected from the transmitted shock cannot
coalesce until the head of the re
ected wave becomes
stationary, that is, the 
ow becomes sonic. Implicit
in the proof is the assumption that the head of the re-

ected wave becomes stationary for conditions on one
of the boundaries of the region of ambiguity. While
this is true for the self-similar model, it is not clear
that this is also true for the transient problem.

For an area divergence, no multiple solutions are
known to exist. The region of ambiguity that occurs
for an area contraction can be shown to extend into
the region corresponding to an area divergence in
parameter space. Here, however, a unique solution
with a standing shock is found.

The purpose of this paper is to map the di�er-
ent wave patterns that take place for the self-similar
model in terms of the incident shock strength and
area ratio and to verify the validity of these solutions
by solving the time-dependent quasi-one-dimensional
Euler equations for 
ow in a channel with a steep
cross section. The study is limited to monotonically
increasing or decreasing areas. The problem is de-
�ned and its method of solution is explained in the
�rst section. This section also investigates the 
ow
patterns that take place for an area divergence and
an area contraction. Following in the next section,
the quasi-one-dimensional model is introduced and
the numerical method for solving this problem is out-
lined. The results section compares the self-similar
model and the quasi-one-dimensional model. Finally,
conclusions are discussed in the last section.



Symbols

A channel area

AL channel area to the left of
area discontinuity

AR channel area to the right of
area discontinuity

a speed of sound

C Riemann variable de�ned by
equation (21)

D Jacobian matrix de�ned by
equation (27)

e speci�c total energy

F 
ux matrix de�ned by
equation (24)

K constant in minmod limiter

LU left eigenvector matrix of C

M Mach number

M�
i value of Mi corresponding

to sonic conditions in
region 3

p pressure

pr pressure ratio (see eq. (9))

Q source vector de�ned by
equation (24)

R residual de�ned by equa-
tion (33)

S entropy (see eq. (5))

t time

U unknown vector de�ned by
equation (24)

u velocity

W characteristic variable
vector de�ned by equa-
tion (28)

fW value of W returned by
minmod limiter

w shock wave speed

x axial coordinate

y argument for minmod
limiter

z argument for minmod
limiter

� area ratio (see eq. (1))

�c asymptote of curve c (see
�g. 2)

�d asymptote of curve d (see
�g. 2)

� de�ned by equation (25)


 speci�c heat ratio

� de�ned by equation (4)

� de�ned by equation (4)

� characteristic slope

� constant appearing in
minmod limiter

� density

� constant appearing in
equation (22)

� entropy production

Subscripts:

i incident shock

k time counter

n space counter

r re
ected shock

t transmitted shock; di�eren-
tiation with respect to time

x di�erentiation with respect
to x

0 starting conditions

1; 2; 3; : : : regions of 
ow

Superscripts:

k time counter

+ forward di�erence

� backward di�erence

( ) Runge-Kutta stage

Special notation:

a, b, : : :, e curves in �gure 2

I, II, : : :, IV quadrants in �gure 2

Ia, Ib, Ic, IIa, IIb, 
ow patterns in quadrants
IIIa, IIIb, IVa
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Self-SimilarModel

Consider two in�nitely long constant area ducts
that are connected by a short, monotonically increas-
ing or decreasing transition section. Assume that the
transition section is small enough that it can be re-
placed by an abrupt transition. Further assume that
the gas inside the duct is at rest. We are interested
in establishing the valid wave patterns that result
when a shock wave moving from left to right passes
through the discontinuous area change. Let x = 0
be the location of the area jump, and let t = 0 be
the time at which the incident shock reaches the area
jump. Because there is no reference length, we expect
the solution to be constant along rays originating at
(0,0). That is, the dependent variables are only func-
tions of the ratio x=t.

Method of Solution

A typical wave diagram of the interaction of a
shock wave with an area discontinuity is shown in
�gure 1. In all such �gures that follow, the area dis-
continuity is depicted as a long-dash line, the shock
waves are depicted as thick solid lines, a contact sur-
face is depicted as a short-dash line, and an expansion
fan is depicted by thin solid lines. Region 1 is the re-
gion to the right of the area discontinuity and ahead
of the transmitted shock; region 2 is the region to the
left of the area discontinuity and ahead of the inci-
dent shock. The 
ow is assumed to be at rest in both
of these regions, and the pressure and density are as-
sumed to be uniform. The pattern shown in �gure 1
is one of many that we will be discussing later. The

ow conditions leading to this pattern correspond to
a high incident shock Mach number and a high area
ratio. The area ratio � is de�ned as

� =
AL

AR
(1)

where AL is the area to the left and AR is the area
to the right, both assumed to have a nondimensional
length of 1.

The conditions in region 3, immediately behind
the incident shock, are evaluated from the Rankine-
Hugoniot relations:

u3 =
a2

�
M2

i � 1
�

�Mi

�3 =
�2�M

2
i�

�M2
i + 1

�
p3 = p2


M2
i � �

�

9>>>>>>>>>>>=>>>>>>>>>>>;
(2)
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Figure 1. Typical wave diagram for the interaction of a shock

with an area discontinuity.

Here, u, �, a, and p are the velocity, density, speed
of sound, and pressure, respectively. Pressure and
density are nondimensionalized by their initial values
in region 1, and all velocities are nondimensionalized
by the speed of sound in region 1 divided by

p

. The

subscripts in equations (2) denote the appropriate
region. The Mach number of the incident shock is
denoted by Mi and is given by

Mi =
wi

a2
(3)

where wi is the incident shock speed. In the follow-
ing, � and � are given by

� =

 � 1

2

� =

 + 1

2

9>>=>>; (4)

From the de�nitions of the speed of sound and the
entropy, we have

a3 =

r

p3
�3

S3 = ln(p3)� 
ln(�3)

9>=>; (5)

Conditions in regions 1 and 2 are given by

u1 = u2 = 0

a1 = a2 =
p



p2 = p1 = 1

�2 = �1 = 1

S2 = S1 = 0

9>>>>>>>>>>=>>>>>>>>>>;
(6)
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The 
ow in region 3 becomes sonic when Mi
equals some critical value M�

i . If we set M3 = 1,
using equations (2) and (5), we get

M�2
i =

(7� 
) +
q
(7� 
)2 � 16(2� 
)

4(2� 
)
(7)

For values ofMi greater thanM
�
i , the 
ow in region 3

is supersonic. For 
 = 1:4,M�
i = 2:068. AsMi !1,

the Mach number in region 3 approaches the value
1=
p

�. For 
 = 1:4, the upper limit for M3 is 1.890.

Across the contact surface, the following two re-
lations must be satis�ed:

p4 = p5

u4 = u5

)
(8)

If the Mach number Mt of the transmitted shock
is known, then the 
ow in region 4 is de�ned by
equations (2) and (5), with Mi replaced by Mt and
subscripts 2 and 3 replaced by 1 and 4, respectively.
The Mach number of the transmitted shock, in terms
of the pressure ratio pr = p4=p1, is given by

Mt =

s
�pr + �



(9)

Therefore, with p5 known, region 4 is completely
de�ned.

In general, the wave pattern between regions 3
and 5 will be di�erent from that shown in �gure 1.
The speci�c pattern will depend on the value of the
incident Mach number and the area ratio. Here we
illustrate how the solution for the wave pattern of
�gure 1 is obtained, with the understanding that
similar procedures are used as the wave pattern
changes between regions 3 and 5.

The Mach number in region 6 (region 6 is actually
one point in space), immediately to the right of the
area discontinuity, is sonic. Therefore, by solving the
conservation of mass relation written in the form

� =
M6

M7

 
1 + �M2

7

1 + �M2
6

!�=2�

(10)

we can obtainM7. Given M7, the Rankine-Hugoniot
relations across the re
ected shock can be solved it-
eratively to obtain the solution for region 7. With
region 7 de�ned, we turn our attention again to re-
gion 6. Since the 
ow is isentropic between regions 7
and 6, we have

S6 = S7 (11)

From the conservation of total enthalpy,

a6 = a7

 
1 + �M2

7

�

!1=2

(12)

and since the 
ow is sonic in region 6,

u6 = a6 (13)

The density and pressure follow from equations (5):

�6 = exp

24 ln
�
a26=


�
� S6

2�

35
p6 =

�6a
2
6




9>>>>>>=>>>>>>;
(14)

The Riemann variable on the characteristic with
slope u+ a, crossing the expansion fan, provides one
piece of information about region 5. If we guess the
slope of the expansion tail, �5 = u5 � a5, after some
simpli�cation we get

u5 = a6 +
�5

�

a5 = u5 � �5

9>=>; (15)

Because S5 = S6, the pressure and density in region 5
can be obtained from equations (14) with an appro-
priate change of subscripts. If u5 matches u4 the
problem is solved. Otherwise, we continue iterating
on �5 until u5 = u4.

The lines Mi = 2:068 and � = 1 lead to a natural
breakup of the parameter space Mi, � into four
quadrants, as shown in �gure 2. In the following
two sections, we explore the various wave patterns
that represent solutions in each of these quadrants.

Area Divergence

Consider the �rst quadrant, Mi < 2:068 and
� < 1. For weak incident shocks, a weak rarefaction
wave is re
ected when the shock crosses the area
discontinuity. The e�ect of the rarefaction is to
accelerate the 
ow before it enters into the area
divergence. Because the 
ow remains subsonic as
it reaches the area divergence, it is decelerated as
it crosses into the big chamber. In general the
transmitted shock is weaker than the incident shock.
Figure 3 shows the wave pattern that is valid in this
region, which we label Ia. The 
ow conditions for
this �gure are Mi = 1:100 and � = 0:5.
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M3 = 0.154

Figure 3. Wave pattern Ia. Mi = 1:100; � = 0:5.

As the strength of the incident shock increases,
the rarefaction wave becomes stronger, eventually
creating sonic conditions at the entrance to the area
divergence. The locus of points corresponding to
sonic conditions at the entrance to the divergence
is shown as curve a in �gure 2. The wave pattern
along this curve is of type Ia. Figure 4 shows the
pattern for Mi = 1:303 and � = 0:5. If � ! 0,
curve a approaches asymptotically a value of 1.154
for 
 = 1:4.

If the shock strength continues to increase, a
standing shock develops where the area jumps. If
we model the area change by a continuous variation,

.306

.307

M3 = 0.409

Figure 4. Wave pattern along curve a, type Ia. Mi = 1:303;

� = 0:5.

M3 = 0.609

.427

.447

Figure 5. Wave pattern Ib. Mi = 1:500; � = 0:5.

then as the incident shock strength increases, the
standing shock becomes stronger and moves from the
entrance of the divergence, where the area is AL, to
the exit, where the area is AR. If the area change
is modeled by a discontinuity, the standing shock
has no distance to move as the incident shock gains
strength. The shock motion can only be accounted
for through a change in the Mach number ahead of
the shock. This in e�ect models the shock motion be-
tween AL and AR. Figure 5 shows wave pattern Ib
corresponding to a standing shock wave. The condi-
tions for this case are Mi = 1:500 and � = 0:5. The
Mach number immediately ahead of the divergence
is sonic. From sonic conditions, the 
ow is isentropi-
cally accelerated to Mach 1.927, corresponding to an
area ratio of 0.629. After the 
ow crosses the stand-
ing shock, the Mach number becomes 0.591. The 
ow
is then isentropically compressed to Mach 0.427, cor-
responding to an area ratio of 0.794. This completes
the overall area divergence ratio of 0.5. A discontin-
uous area change causes a squeeze of all these Mach
number jumps into one point in space.

As the shock strength continues to increase, the
standing shock reaches the exit of the area diver-
gence. At this point, the 
ow in front of the shock

5



M3 = 0.871

.650 .698

2.197

Figure 6. Wave pattern Ic. Mi = 1:850; � = 0:5.

2.230
.994 1.058

M3 = 1.197

Figure 7. Wave pattern IIa. Mi = 2:500; � = 0:5.

goes through an isentropic expansion corresponding
to the full area jump. The locus of points correspond-
ing to this condition maps to curve b in �gure 2.

The wave pattern changes to type Ic with a
further increase in shock strength. Now the standing
shock is swept downstream, the result being the
pattern shown in �gure 6 forMi = 1:850 and � = 0:5.
This pattern occurs in the region bounded by curve b
and line Mi =M�

i . Above curve b, the 
ow entering
the big chamber is supersonic. AsMi approachesM

�
i

the re
ected expansion fan disappears.

Consider the second quadrant, Mi > 2:068 and
� < 1. In this quadrant the 
ow behind the incident
shock is supersonic. For area ratios to the right of
curve b the pattern that occurs is shown in �gure 7.
The �gure is drawn for Mi = 2:500 and � = 0:5. The
signi�cant features of this pattern, labeled IIa, are
the absence of a re
ected wave and the appearance of
a downstream running secondary shock. As discussed
previously, the Mach number behind the incident
shock is bounded by the value 1.890 for 
 = 1:4. This
Mach number limitation does not apply to the 
ow to
the right of the area divergence. Here very high Mach
numbers can be achieved by decreasing the area ratio
�, but keeping it to the right of curve b. For example,
for the conditions of �gure 7, Mach 2.230 is achieved
in the big chamber. If the area ratio for this case
is lowered to 0.15, Mach 3.512 is achieved in the big

.522

1.493
1.495

M3 = 1.471

Figure 8. Wave pattern IIIa. Mi = 3:500; � = 1:3.

.628

1.481
1.485

M3 = 1.471

Figure 9. Wave pattern along curve c, type IIIa. Mi = 3:500;

� = 1:157.

chamber. This fact was used by Hertzberg (ref. 8) to
design a new shock tube for hypersonic 
ows. If, at
a given Mi, the area ratio is less than or equal to the
ratio corresponding to curve b, then the secondary
shock becomes a standing shock. This pattern is
labeled IIb. It is very similar to pattern Ib, �gure 5,
except that the 
ow behind the incident shock is
supersonic and there is no re
ected rarefaction wave.

Area Contraction

Consider the third quadrant, Mi > 2:068 and
� > 1. If the area ratio is large, wave pattern IIIa
occurs. This is illustrated in �gure 8 for Mi = 3:500
and � = 1:3. In this region the re
ected wave is
a shock. The subsonic 
ow behind the re
ected
shock is accelerated to sonic conditions by the area
convergence. The 
ow is then further accelerated by
a rarefaction wave running downstream. In general,
the transmitted shock is stronger than the incident
shock. If we decrease the area ratio, holding Mi

�xed, we reach curve c of �gure 2 when � = 1:157.
The wave pattern at these conditions is illustrated
in �gure 9. It is clearly a type IIIa pattern. If we
continue to decrease the area ratio, holding Mi, we
reach curve d when � = 1:086. At these conditions
the re
ected shock becomes a standing shock, which

6



M3 = 1.471

1.355
1.485

1.478

Figure 10. Wave pattern IIIb. Mi = 3:500; � = 1:06.

M3 = 1.471

1.298
1.491

1.481

Figure 11. Wave pattern along curve d, type IIIb. Mi =

3:500; � = 1:086.

is the limiting case of pattern IIIa. Curve d consists
of the locus of points for which the re
ected shock
becomes a standing shock. Oppenheim, Urtiew, and
Stern (ref. 5) showed that as Mi ! 1, curve d
approaches an area ratio �d given by

�d =
1p
2�

[
(1� �)]�1=2� (16)

For 
 = 1:4, �d takes on the value 1.543.

If the area ratio is just slightly greater than one,
then we have a type IIIb wave pattern. This wave
pattern is illustrated in �gure 10 for Mi = 3:500
and � = 1:06. Under these conditions, the 
ow
reaches the area jump at supersonic speed. The
area contraction compresses the 
ow isentropically,
but not su�ciently to make the 
ow subsonic. Once
within the small chamber, the 
ow is accelerated by a
rarefaction wave running downstream. If we hold Mi

�xed and increase the area ratio, we reach curve d
when � = 1:086. The wave pattern is illustrated
in �gure 11 and is clearly a type IIIb pattern. If
we further increase the area ratio, we reach curve c
when � = 1:157. At these conditions, the area
ratio isentropically compresses the supersonic 
ow
behind the incident shock to sonic conditions. Thus,
the head of the expansion running downstream in

1.506
1.489

M3 = 1.471

Figure 12. Wave pattern along curve c, type IIIb. Mi = 3:500;

� = 1:157.

the small chamber is sonic. This wave pattern is
illustrated in �gure 12. Curve c represents the locus
of points for which the area ratio produces sonic
conditions after the area jump. Oppenheim, Urtiew,
and Stern (ref. 5) also showed that as Mi ! 1,
curve c approaches an area ratio �c given by

�c =
p
2�
�

2

��1=2�
(17)

For 
 = 1:4, �c takes on the value 1.193.

The region between curves c and d is the region
of ambiguity discussed by Oppenheim, Urtiew, and
Stern (ref. 5) and Rudinger (refs. 6 and 7). As we
have already seen, wave patterns IIIa and IIIb coexist
in this region. In addition, a third pattern with a
standing shock within the area contraction and an
expansion running downstream is also a solution of
the self-similar model.

Oppenheim, Urtiew, and Stern (ref. 5) invoked
the principle of minimum entropy production to re-
solve the ambiguity. For each solution in this region
they de�ned the entropy production � to be

� = max(S4; S5) (18)

The resulting entropy production is shown in �g-
ure 13 for Mi = 3:500 and 1:086 � � � 1:157. From
this, they concluded that wave pattern IIIb was valid
for area ratios slightly greater than those on curve d.
However, at some point within the region of ambigu-
ity the standing shock pattern would take over until
curve c was reached. Rudinger (ref. 6) objected to
their conclusion, dismissing outright the minimum
entropy principle and correctly pointing out that for
an area contraction a standing shock solution is un-
stable, as has also been shown in other investigations
(ref. 9). Rudinger (refs. 6 and 7) further showed that
if the area discontinuity is replaced by a steep area

7
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IIIb
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Figure 13. Entropy production in region of ambiguity. (Based

on Oppenheim, Urtiew, and Stern (ref. 5).)

variation and a time-dependent analysis of the shock-
area interaction is carried out, the wave pattern ob-
served within the ambiguity region is IIIb.

The minimum entropy production principle failed
to predict the valid solution because the entropy pro-
duction was incorrectly de�ned. The total entropy of
an in�nitesimal element of mass is S�Adx. If we inte-
grate between x = �1 and x =1 at a �xed time t,
we get the total entropy in the channel. The entropy
production in an interval of time �t is, therefore,
given by

� =

Z 1
�1

[�(�t)S(�t)� �(0)S(0)]Adx (19)

Equation (19) can be easily integrated in closed form.
For wave pattern IIIa, �gure 8, we get

�

�t
= (�3S3 � �7S7)wr +

S5

�

Z u5�a5

0

�dx

+
1

�
[�5S5a5 + �4S4(wt � u4)] (20)

Region 7 is downstream of the re
ected shock, and
wr and wt are the speeds of the re
ected and trans-
mitted shocks, respectively. The remaining integral

IIIa

IIIb

Standing shockχ/∆t

α
1.08 1.12 1.16

11.3

11.2

11.1

11.0

10.9

10.8

10.7
1.10 1.14

Figure 14. Entropy production in region of ambiguity.

in equation (20) integrates to

Z u5�a5

0

� dx =

"
exp(�S5)




�
�

�

�2#1=2�

�
h
Ck=� � (C � u5 + a5)

k=�
i �
�

C =
a6

�
+ u6

9>>>>>>>>>=>>>>>>>>>;
(21)

With similar results for the other two wave patterns,
we obtain �gure 14. Now, the standing shock solu-
tion links patterns IIIa and IIIb without overlapping
pattern IIIb, and the latter produces the minimum
entropy consistent with Rudinger's time-dependent
computations. The �gure also shows that the transi-
tion between pattern IIIb and IIIa across curve c is
discontinuous.

If we consider the wave patterns along curves a
and c, �gures 4 and 12, we see that the patterns
are very similar, and we can think of curve c as the
extension of curve a into the third quadrant. The
same can be said of curves b and d. Curve d is not a
boundary between two di�erent wave patterns and,
now that the ambiguity has been resolved, it could
be disregarded.

Consider the fourth quadrant, Mi < 2:068 and
� > 1. Here we �nd wave pattern IVa, illustrated
in �gure 15 for Mi = 1:500 and � = 1:3. The
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.644

M3 = 0.604

Figure 15. Wave pattern IVa. Mi = 1:500; � = 1:3.

salient features are a re
ected shock moving into
the subsonic 
ow behind the incident shock and
an isentropic acceleration of the 
ow entering the
area contraction not su�ciently strong to generate
supersonic 
ow in the small chamber. If we hold �
�xed and increaseMi, curve e is met whenMi reaches
the value 1.988. At this point the 
ow in the small
chamber reaches sonic conditions. Curve e, thus, is
the locus of points separating patterns IIIa and IVa.
If �!1, curve e approaches asymptotically a value
of 1.718 for 
 = 1:4.

Quasi-One-Dimensional

Time-Dependent Model

In this formulation, the discontinuous area jump
is replaced by a steep area change de�ned by

A(x) =
1

2
(AL +AR)�

1

2
(AL �AR) tanh(�x) (22)

The transition from AL to AR is centered about
x = 0 and takes place in an interval approximately
equal to 2=�.

Inside the duct de�ned by equation (22) we solve
the quasi-one-dimensional Euler equations in weak
conservation form

Ut + Fx = Q (23)

where

U =

8><>:
�

�u

�e

9>=>;F =

264
�u

p+ �u2

u(�e+ p)

375Q =

8>><>>:
�u�

�u2�

u(�e+ p)�

9>>=>>;
(24)

and
p = ��(2e� u2)

� =
Ax

A

9>=>; (25)

The quasi-linear form of equation (23) is

Ut +D(U)Ux = Q (26)

where

D(U) =
@F

@U
=

2664
0 1 0

1
2
(
 � 3)u2 (3� 
)u 2�

2�u3 � 
ue=p 
e=p� 3�u2 
u

3775
(27)

We introduce a discrete grid (xn; tk) = (x0 +
n�x; t0 + k�tk) where �x is constant, but �tk
changes from time step to time step to satisfy the
CFL condition (ref. 10). On this grid, we obtain an
approximation to our dependent variable U at cell
centers xn +

1
2
�x using the Roe scheme (ref. 11) to

approximate the 
ux derivative in equation (23). In
the original Roe scheme, the dependent variable U is
interpolated to the cell faces. In our implementation,
we �rst construct the characteristic di�erences �W�

from

�W� = LU �U� (28)

where
�U+ = Un+1 �Un

�U� = Un �Un�1

9=; (29)

and LU is the left eigenvector matrix of D(U) eval-
uated with Un values. The characteristic di�erence
is then limited using the minmod limiter

�fW� = minmod
h
�W�; ��W�

i
� =

3�K

1�K

9>>=>>; (30)

where

minmod[z; y] =

�
0 sign(z) 6= sign(y)

sign(z)min(jzj; jyj) sign(z) = sign(y)

(31)
and K is the free constant in the kappa interpolation

of van Leer (ref. 12), which we use to interpolate �fW
to the cell faces. In this application K = 1=3. At the
cell faces �U is reconstructed from

�U = L�1U �fW (32)

The additional work to construct the characteristic
di�erences and then the conservative variables was
required in order to capture a strong shock. Without
this work, the algorithm produces large oscillations
and eventually fails. The rest of the 
ux evaluation

9



follows the Roe scheme as described in reference 11.

Equation (23) is integrated in time using a three-
stage Runge-Kutta scheme. Let

R(U) = �tk(Q�Fx) (33)

then U at time level k + 1 follows from

U(0) = Uk

U(1) = U(0)+
1

3
R
�
U(0)

�
U(2) = U(0)+

1

2
R
�
U(1)

�
U(3) = U(0)+R

�
U(2)

�
Uk+1 = U(3)

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>;

(34)

Although the scheme allows a CFL number of 2.8,
we have used a CFL number of 1 to avoid wiggles
at shock waves. The overall scheme is second order
accurate away from discontinuities.

Results

Comparisons between the self-similar model and
the quasi-one-dimensional time-dependent model are
presented in this section. The integration of the lat-
ter is done from x = �2 to x = 2. The incident
shock is located at x = �0:5 at t = 0. For these
cases, � = 10 and �x = 0:02. The �rst case is for
Mi = 1:500 and � = 0:5. This case is illustrated in
�gure 5. It corresponds to a type Ib pattern with a
standing shock within the area constriction. The re-
sults from the quasi-one-dimensional time-dependent
solution are shown in �gure 16. The re
ected ex-
pansion, standing shock, and transmitted shock are
clearly shown in the Mach contours. In �gure 17,
the Mach number distribution at t = 2:5 is com-
pared with the levels predicted by the self-similar
model. The agreement between the two models is
good. For the second comparison, we have chosen
conditions corresponding to �gure 7,Mi = 2:500 and
� = 0:5. At these conditions, no wave is re
ected
and a secondary shock running downstream appears.
The expected features are clearly shown in the Mach
contours in �gure 18. The Mach number distribu-
tion at t = 1 is compared to the self-similar solution
in �gure 19. The agreement is good except for the
slip line in the quasi-one-dimensional time-dependent
solution. The slip line is spread over several mesh
points. This is a typical problem of shock capturing

Figure 16. Mach number contours from solution to quasi-one-

dimensional time-dependentequations forMi = 1:500 and
� = 0:5.

t = 2.5
Self-similar

2.0

1.8

1.6

1.4

1.2

1.0

.8

.6

.4

.2

Mach
number

-2.0 -1.0 0 1.0 2.0
x

Figure 17. Comparison of self-similar and quasi-one-

dimensional time-dependent solutions for Mi = 1:500 and
� = 0:5.

schemes. The third case chosen corresponds to �g-
ure 8, Mi = 3:500 and � = 1:3. This case consists
of a re
ected shock and a rarefaction wave running
downstream. Figure 20 shows the formation of the
re
ected shock as the left-running characteristics co-
alesce and the formation of the rarefaction fan from
the other family of characteristics. A Mach number
cut at t = 1:4 is shown in �gure 21. The agreement
between the two models is good, but the compression

10



Figure 18. Mach number contours from solution to quasi-one-

dimensional time-dependent equations forMi = 2:500 and
� = 0:5.

t = 1.0
Self-similar

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

.8

Mach
number

-2.0 -1.0 0 1.0 2.0
x

Figure 19. Comparison of self-similar and quasi-one-

dimensional time-dependent solutions for Mi = 2:500 and

� = 0:5.

behind the transmitted shock is slightly underpre-
dicted by the quasi-one-dimensional time-dependent
solution. For the last case, we have chosen condi-
tions within the region of ambiguity, Mi = 3:500 and
� = 1:1. As predicted by the principle of minimum
entropy production, the wave pattern corresponds to
pattern IIIb with a rarefaction wave running down-

Figure 20. Mach number contours from solution to quasi-one-

dimensional time-dependentequations forMi = 3:500 and
� = 1:3.

t = 1.4
Self-similar

1.6

1.4

1.2

1.0

.8

.6

.4

Mach
number

-2.0 -1.0 0 1.0 2.0
x

Figure 21. Comparison of self-similar and quasi-one-

dimensional time-dependent solutions for Mi = 3:500 and

� = 1:3.

stream. The results are shown in �gures 22 and 23.
Figure 23 shows that the isentropic recompression
produced by the area contraction is properly pre-
dicted by the quasi-one-dimensional time-dependent
model; however, the expansion running downstream
shows a wiggle near its head.
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Figure 22. Mach number contours from solution to quasi-one-

dimensional time-dependent equations forMi = 3:500 and
� = 1:1.

t = 1.4
Self-similar1.50

1.45

1.40

1.35

1.30

1.25

Mach
number

-2.0 -1.0 0 1.0 2.0
x

Figure 23. Comparison of self-similar and quasi-one-
dimensional time-dependent solutions for Mi = 3:500 and

� = 1:1.

Conclusions

The self-similar model predicted nine wave pat-
terns depending on the incident shock wave Mach
number and area-jump ratio. For an area contrac-
tion and an incident shock Mach number greater than
2.068, a narrow region was found where three wave
patterns satisfy all the governing equations. One of
these wave patterns consisted of a standing shock,

a con�guration known to be unstable. The pat-
tern predicted in this region by numerical solutions
of the quasi-one-dimensional time-dependent Euler
equations is in agreement with earlier results. The
entropy produced by the wave system was de�ned.
It was then shown that the admissible pattern in
the ambiguous region is in agreement with the pre-
dictions of the minimum entropy production princi-
ple. This resolved some criticisms of this principle,
when applied to this problem, raised by Rudinger. In
general, good quantitative agreement was observed
between the self-similar model and the quasi-one-
dimensional time-dependent model.

NASA Langley Research Center

Hampton, VA 23665-5225

June 18, 1991
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